Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Quantum computers pose a significant threat to modern cryptographic systems by efficiently solving problems such as integer factorization through Shor’s algorithm. Homomorphic encryption (HE) schemes based on ring learning with errors (Ring-LWE) offer a quantum-resistant framework for secure computations on encrypted data. Many of these schemes rely on polynomial multiplication, which can be efficiently accelerated using the number theoretic transform (NTT) in leveled HE, ensuring practical performance for privacy-preserving applications. This article presents a novel NTT-based serial pipelined multiplier that achieves full-hardware utilization through interleaved folding, and overcomes the 50% under-utilization limitation of the conventional serial R2MDC architecture. In addition, it explores tradeoffs in pipelined parallel designs, including serial, 2-parallel, and 4-parallel architectures. Our designs leverage increased parallelism, efficient folding techniques, and optimizations for a selected constant modulus to achieve superior throughput (TP) compared with state-of-the-art implementations. While the serial fold design minimizes area consumption, the 4-parallel design maximizes TP. Experimental results on the Virtex-7 platform demonstrate that our architectures achieve at least 2.22 times higher TP/area for a polynomial length of 1024 and 1.84 times for a polynomial length of 4096 in the serial fold design, while the 4-parallel design achieves at least 2.78 times and 2.79 times, respectively. The efficiency gain is even more pronounced in TP squared over area, where the serial fold and 4-parallel designs outperform prior works by at least 4.98 times and 26.43 times for a polynomial length of 1024 and 6.7 times and 43.77 times for a polynomial length of 4096, respectively. These results highlight the effectiveness of our architectures in balancing performance, area efficiency, and flexibility, making them well-suited for high-speed cryptographic applications.more » « lessFree, publicly-accessible full text available June 11, 2026
-
Convolution is a fundamental operation with diverse applications in signal processing, computer vision, and machine learning. This article reviews three distinct convolutions: linear convolution (also referred to as aperiodic convolution), positive-wrapped convolution (PWC) (also known as circular convolution), and negative-wrapped convolution (NWC). Additionally, we propose an alternative approach to computing linear convolution without zero padding by leveraging the PWC and NWC. We compare two fast Fourier transform (FFT)-based methods to compute linear convolution: the traditional zero-padded PWC method and a new method based on the PWC and NWC. Through a detailed analysis of the flowgraphs (FGs), we demonstrate the equivalence of these methods while highlighting their unique characteristics. We show that computing the NWC using the weighted PWC method is equivalent to a part of the linear convolution computation with zero padding. Furthermore, it is possible to extract the PWC and NWC from structures to compute linear convolution with zero padding, where the last butterfly stage can be eliminated. This article aims to establish a clear connection among PWC, NWC, and linear convolution, illustrating new perspectives on computing different convolutions.more » « lessFree, publicly-accessible full text available May 1, 2026
-
This paper investigates scalp electroencephalogram (EEG) data from 14 subjects with unilateral prefrontal cortex (pFC) lesions and 20 healthy controls during lateral visuospatial working memory (WM) tasks. The goal is to differentiate the brain networks involved in WM processing between these groups. The EEG recordings are transformed into graph signals, with proximity-weighted brain connectivity measures as edges and centrality measures as nodal features. Graph convolutional network (GCN) layers are used for feature representation, followed by a fully connected layer for classification. The GCN-based model effectively handles nine classification tasks, proving that graph-based network representation is versatile for describing brain interactions. The sparse MI-GCI-based graph model’s accuracy effectively captures the functional segregation of distinct WM tasks. The classifier using mutual information-guided Granger causality index (MI-GCI) with 20% of top edges matched prior classification performance with 67% fewer parameters and 80% less graph density, identifying the correct class of all 34 subjects in group identification using leave-one-out cross-validation and two-thirds majority voting.more » « lessFree, publicly-accessible full text available January 8, 2026
-
Free, publicly-accessible full text available February 27, 2026
-
Polynomial multiplication over the quotient ring is a critical operation in Ring Learning with Errors (Ring-LWE) based cryptosystems that are used for post-quantum cryptography and homomorphic encryption. This operation can be efficiently implemented using number-theoretic transform (NTT)-based architectures. Among these, pipelined parallel NTTbased polynomial multipliers are attractive for cloud computing as these are well suited for high throughput and low latency applications. For a given polynomial length, a pipelined parallel NTT-based multiplier can be designed with varying degrees of parallelism, resulting in different tradeoffs. Higher parallelism reduces latency but increases area and power consumption,and vice versa. In this paper, we develop a predictive model based on synthesized results for pipelined parallel NTT-based polynomial multipliers and analyze design tradeoffs in terms of area, power, energy, area-time product, and area-energy product across parallelism levels up to 128. We predict that, for very long polynomials, area and power differences between designs with varying levels of parallelism become negligible. In contrast, areatime product and energy per polynomial multiplication decrease with increased parallelism. Our findings suggest that, given area and power constraints, the highest feasible level of parallelism optimizes latency, area-time product, and energy per polynomial multiplication.more » « less
-
Fully Homomorphic Encryption (FHE) presents a paradigm-shifting framework for performing computations on encrypted data, offering revolutionary implications for privacy-preserving technologies. This paper introduces a novel hardware implementation of scheme switching between two leading FHE schemes targeting different computational needs, i.e., arithmetic HE scheme CKKS, and Boolean HE scheme FHEW. The proposed architecture facilitates dynamic switching between the schemes with improved throughput and latency compared to the software baseline. The proposed architecture computation modules support scheme switching operations involving coefficient conversion, modular switching, and key switching. We also optimize the hardware designs for the pre-processing and post-processing blocks, involving key generation, encryption, and decryption. The effectiveness of our proposed design is verified on the Xilinx U280 Datacenter Acceleration FPGA. We demonstrate that the proposed scheme switching accelerator yields a 365× performance improvement over the software counterpart.more » « less
-
Homomorphic encryption enables computations on the ciphertext to preserve data privacy. However, its practical deployment has been hindered by the significant computational overhead compared to the plaintext computations. In response to this challenge, we present HERMES, a novel hardware acceleration system designed to explore the computation flow of the CKKS homomorphic encryption bootstrapping process. Among the major contributions of our proposed architecture, we first analyze the properties of the CKKS computation data flow and propose a new scheduling strategy by partitioning the computation modules into general-purpose and special-purpose modular computation modules to allow smaller resource consumption and flexible scheduling. The computation modules are also reconfigurable to reduce the memory access overhead during the intermediate computation. We also optimize the CKKS computation dataflow to improve the regularity with reduced control overhead.more » « less
-
This paper addresses the design of a partly-parallel cascaded FFT-IFFT architecture that does not require any intermediate buffer. Folding can be used to design partly-parallel architectures for FFT and IFFT. While many cascaded FFT-IFFT architectures can be designed using various folding sets for the FFT and the IFFT, for a specified folded FFT architecture, there exists a unique folding set to design the IFFT architecture that does not require an intermediate buffer. Such a folding set is designed by processing the output of the FFT as soon as possible (ASAP) in the folded IFFT. Elimination of the intermediate buffer reduces latency and saves area. The proposed approach is also extended to interleaved processing of multi-channel time-series. The proposed FFT-IFFT cascade architecture saves about N/2 memory elements and N/4 clock cycles of latency compared to a design with identical folding sets. For the 2-interleaved FFT-IFFT cascade, the memory and latency savings are, respectively, N/2 units and N/2 clock cycles, compared to a design with identical folding sets.more » « less
-
The ML-KEM post-quantum cryptography (PQC) scheme requires matrix-vector polynomial multiplication and polynomial arithmetic operations in the number theoretic transform (NTT) domain. Prior optimization approach KyberMat leverages the transposed-form fast filtering structure and sub-structure sharing technique, reducing the computational complexity. In this paper, a novel and area-efficient design builds upon the KyberMat framework, using the hierarchical interleaved folding algorithm to reduce hardware resources. Two design strategies are utilized in the proposed design. The proposed design initially scales down the NTT/inverse NTT processors via folding transformation, while utilizing a fixed number of DSPs and LUTs across different security levels of ML-KEM. This work further introduces a recursive summing unit along with the interleaving method to ensure continuous data processing and ultimately improve hardware utilization and throughput. The experimental result shows that our proposed area-efficient design achieves an average reduction of 71.55% in DSPs and 63.89% in LUTs among three different security levels, compared to the KyberMat framework.more » « less
-
Quantum computing is an emerging technology that has the potential to achieve exponential speedups over their classical counterparts. To achieve quantum advantage, quantum principles are being applied to fields such as communications, information processing, and artificial intelligence. However, quantum computers face a fundamental issue since quantum bits are extremely noisy and prone to decoherence. Keeping qubits error free is one of the most important steps towards reliable quantum computing. Different stabilizer codes for quantum error correction have been proposed in past decades and several methods have been proposed to import classical error correcting codes to the quantum domain. Design of encoding and decoding circuits for the stabilizer codes have also been proposed. Optimization of these circuits in terms of the number of gates is critical for reliability of these circuits. In this paper, we propose a procedure for optimization of encoder circuits for stabilizer codes. Using the proposed method, we optimize the encoder circuit in terms of the number of 2-qubit gates used. The proposed optimized eight-qubit encoder uses 18 CNOT gates and 4 Hadamard gates, as compared to 14 single qubit gates, 33 2-qubit gates, and 6 CCNOT gates in a prior work. The encoder and decoder circuits are verified using IBM Qiskit. We also present encoder circuits for the Steane code and a 13-qubit code, that are optimized with respect to the number of gates used, leading to a reduction in number of CNOT gates by 1 and 8, respectively.more » « less
An official website of the United States government
